Diffusion and spatial correlations in suspensions of swimming particles.
نویسندگان
چکیده
Populations of swimming micro-organisms produce fluid motions that lead to dramatically enhanced diffusion of tracer particles. Using simulations of suspensions of swimming particles in a periodic domain, we capture this effect and show that it depends qualitatively on the mode of swimming: swimmers "pushed" from behind by their flagella show greater enhancement than swimmers that are "pulled" from the front. The difference is manifested by an increase, that only occurs for pushers, of the diffusivity of passive tracers and the velocity correlation length with the size of the periodic domain. A physical argument supported by a mean field theory sheds light on the origin of these effects.
منابع مشابه
Velocity fluctuations in fluidized suspensions probed by ultrasonic correlation spectroscopy
Velocity fluctuations in a fluidized suspension of particles are investigated using two new ultrasonic correlation spectroscopies: diffusing acoustic wave spectroscopy and dynamic sound scattering. These techniques probe both the local strain rate and rms velocity of the particles, providing important information about the spatial extent of velocity correlations. Our results demonstrate the pow...
متن کاملDispersion of biased swimming microorganisms in a fluid flowing through a tube
Classical Taylor-Aris dispersion theory is extended to describe the transport of suspensions of self-propelled dipolar cells in a tubular flow. General expressions for the mean drift and effective diffusivity are determined exactly in terms of axial moments, and compared with an approximation a la Taylor. As in the Taylor-Aris case, the skewness of a finite distribution of biased swimming cells...
متن کاملKinetic Models for Biologically Active Suspensions
Biologically active suspensions, such as suspensions of swimming microorganisms, exhibit fascinating dynamics including large-scale collective motions and pattern formation, complex chaotic flows with good mixing properties, enhanced passsive tracer diffusion, among others. There has been much recent interest in modeling and understanding these effects, which often result from long-ranged fluid...
متن کاملLévy fluctuations and mixing in dilute suspensions of algae and bacteria.
Swimming micro-organisms rely on effective mixing strategies to achieve efficient nutrient influx. Recent experiments, probing the mixing capability of unicellular biflagellates, revealed that passive tracer particles exhibit anomalous non-Gaussian diffusion when immersed in a dilute suspension of self-motile Chlamydomonas reinhardtii algae. Qualitatively, this observation can be explained by t...
متن کاملActive colloidal suspensions exhibit polar order under gravity.
Recently, the steady sedimentation profile of a dilute suspension of chemically powered colloids was studied experimentally [J. Palacci et al., Phys. Rev. Lett. 105, 088304 (2010)]. It was found that the sedimentation length increases quadratically with the swimming speed of the active Brownian particles. Here we investigate theoretically the sedimentation of self-propelled particles undergoing...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review letters
دوره 100 24 شماره
صفحات -
تاریخ انتشار 2008